

Abstract #1468

Sensitivity of Triple Negative Breast Cancer Cell Lines to PCM-075, a Highly Selective Polo-like Kinase 1 Inhibitor

Jesse C. Patterson¹, Peter J P Croucher², Aleksandra Francovic², Dario Ballinari³, Fabio Gasparri³, Laura Giorgini³, Penn Whitley², Barbara Valsasina³, Mark Erlander^{2,} and Michael B. Yaffe¹

1Kock Institute for Integrative Cancer Research, MIT, Cambridge, MA, ²Trovagene, Inc., San Diego, CA, USA; ³Nerviano Medical Sciences, S.r.I., Milan, Italy

Background

- Triple negative breast cancer (TNBC) remains a significant challenge due to its aggressive nature and lack
 of therapeutic options beyond chemotherapy
- Molecular identification of TNBC subtypes enables clinical evaluation of targeted therapies, for example, PARP inhibitors (e.g. olaparib), and androgen receptor/synthesis (AR) inhibitors (e.g. bicalutamide, enzalutamide, and abiraterone)
- Polo-like Kinases (PLKs), a family of serine-threonine kinases, regulate various cellular processes including mitosis, DNA replication, and the stress response
- PLK1:
- Over-expressed in many malignancies, including breast cancer
- Inhibition induces cell-cycle arrest and apoptosis in cancer cell lines and xenograft tumor models
- PCM-075:
- Orally-available, highly-selective PLK1 inhibitor
- Causes G2/M arrest and apoptosis in highly mitotic cells
- Kills taxol resistant cells and synergizes with taxol and the platinum-based antineoplastic, cisplatin
- PCM-075 is currently under clinical investigation.

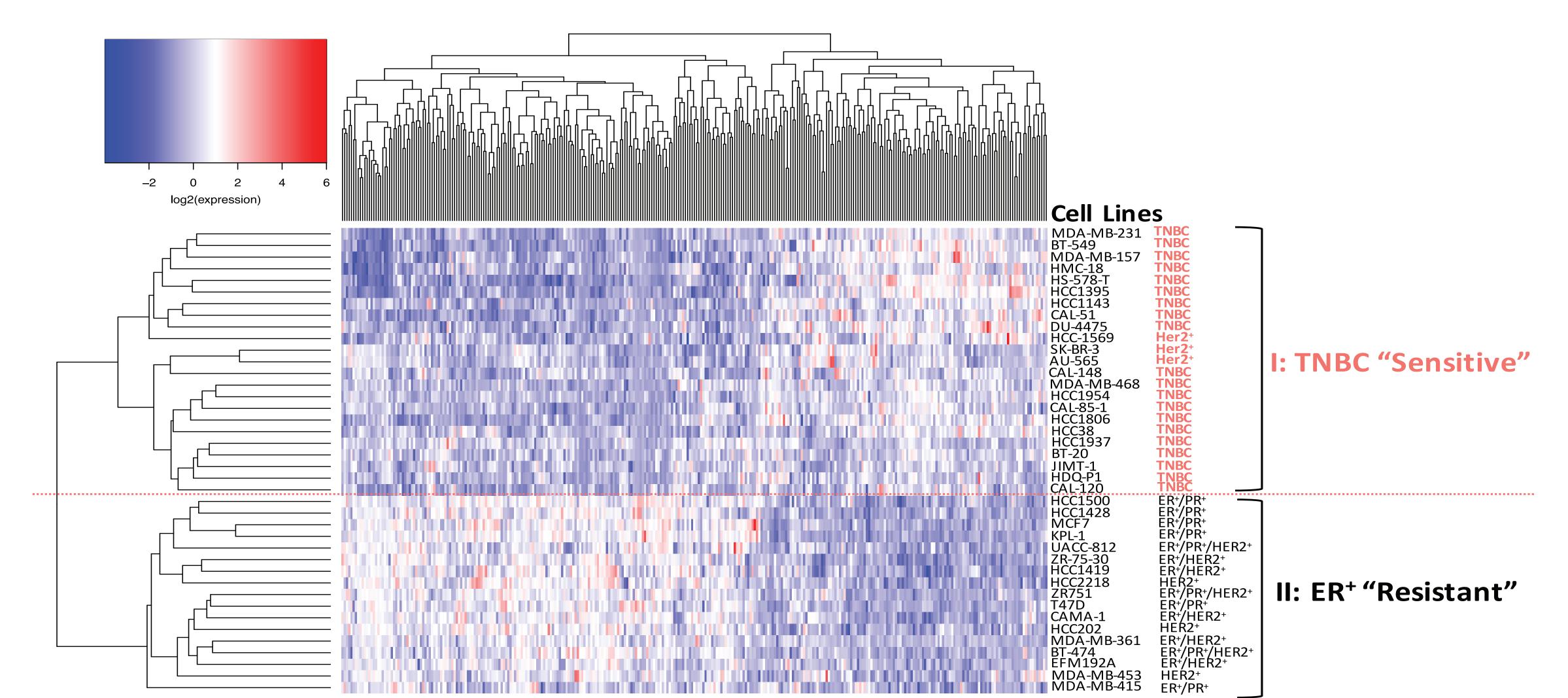
Objective

 To evaluate the activity of PCM-075 in breast cancer cell lines, identify disease subtypes and potential drug combinations where PCM-075 may enhance the efficacy of current and future standard-of-care therapies

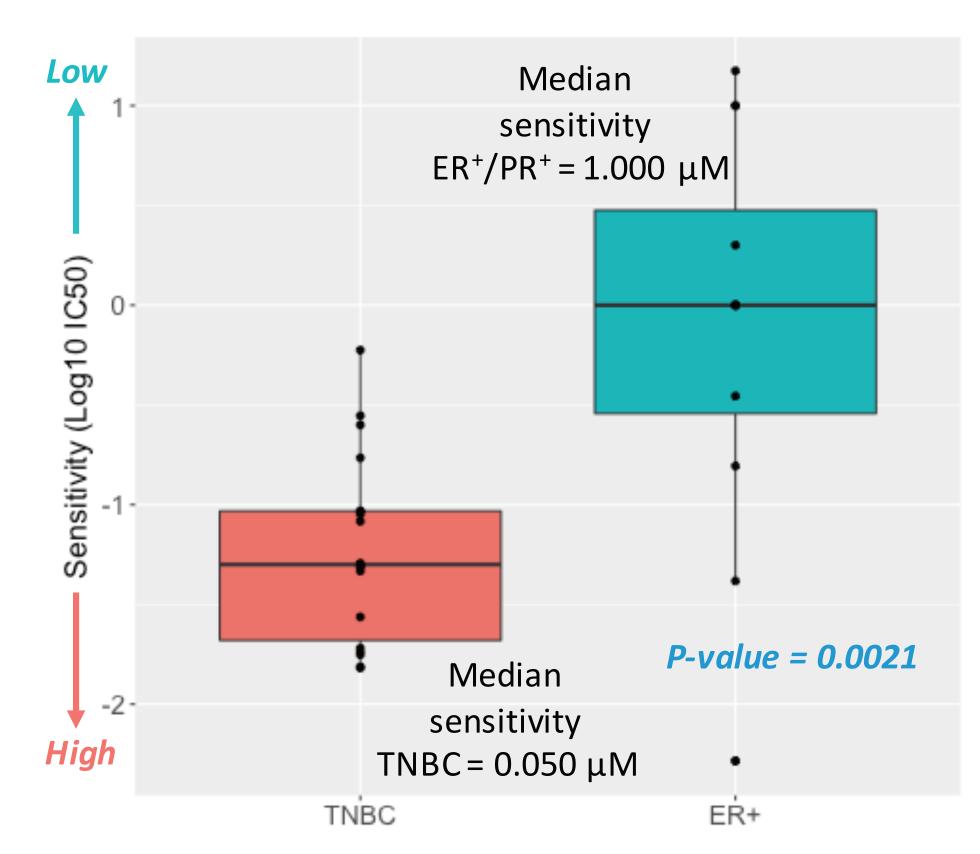
Methods

Sensitivity (IC₅₀) ~ Gene Expression 6 compounds that target PLK1 40 shared breast cancer cell lines 18,541genes¹ Rank Correlation

Identify gene expression signature broadly associated with sensitivity to PLK1 inhibition


Combine p-values (yields 350 genes)

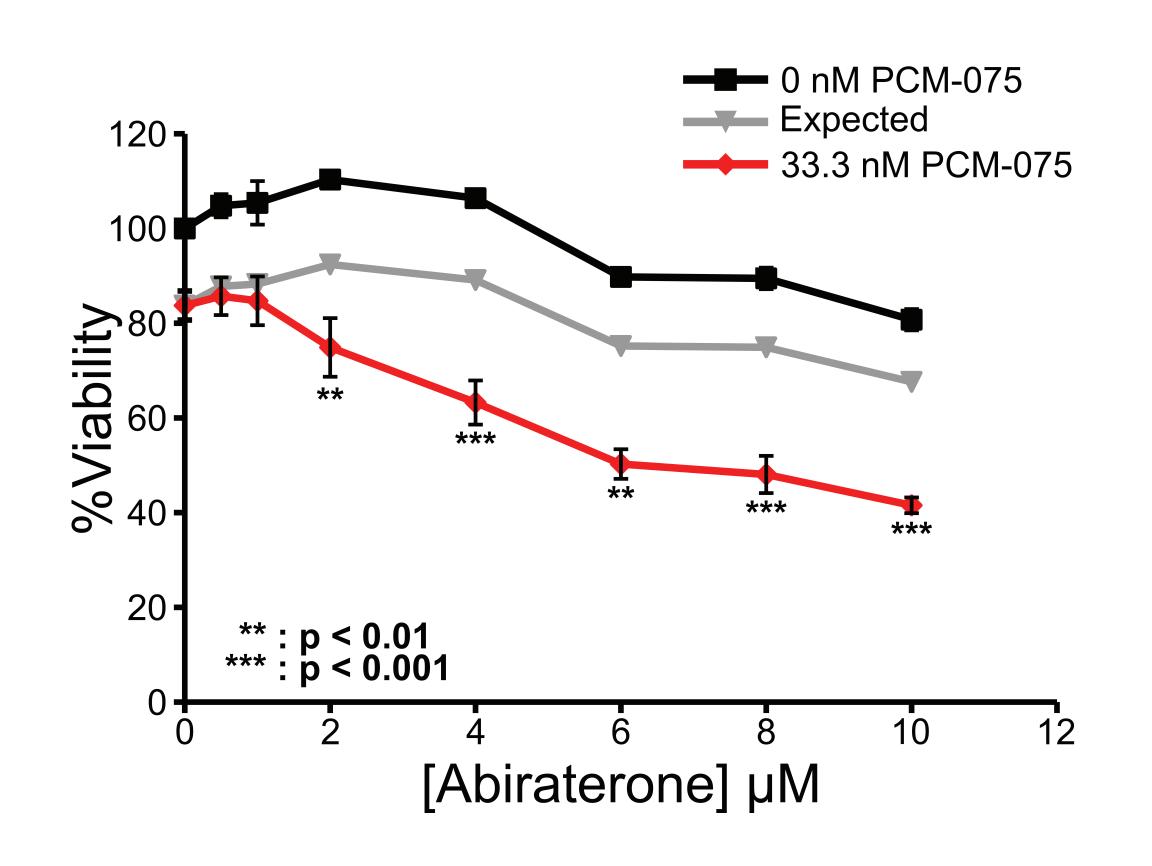
Correlate PLK1 inhibition associated gene expression signature with breast cancer cell lines types²⁻⁵


Heat Map/Cluster

Results

Clustering of cell lines by 350 genes that are associated with sensitivity naturally identifies a TNBC and an ER+ cluster. HER2+ cell lines occur in both clusters

TNBC cell lines are exquisitely sensitive to PCM-075



ER+/PR+	HER2+	Sensitive to PCM075 [IC50 < 0.1 μM] (N)
-	-	14 (18)
-	+	2 (6)
+	-	1 (7)
+	+	1 (5)

Multiple subtypes of TNBC cells are sensitive to PCM-075, including androgen receptor positive lines

Cell Line	TNBC Subtype	Histology	TP53 Status	AR+?	PCM-075 (Sensitive IC50 < 0.1M)
HCC1143	Basal-like 1	DC	LOF	-	0.0274
HCC1937	Basal-like 1	DC	LOF	-	0.5955
MDA-MB-468	Basal-like 1	DC	LOF	AR ⁺	0.0828
HCC1806	Basal-like 2	ASCC	LOF	-	0.0183
CAL851	Basal-like 2	IGA	LOF	-	0.0177
HDQP1	Basal-like 2	IDC	LOF	-	0.0509
DU4475	Basal-like IM	DC	WT	-	0.0465
HCC70	Basal-like 2	DC	LOF	-	0.2789
BT549	Mesenchymal-like	IDC	LOF	-	0.0486
CAL51	Mesenchymal-like	AC	WT	-	0.0191
MDA-MB-231	Mesenchymal-like	IDC	LOF	AR ⁺	0.1716
HS578T	Mesenchymal-like	CS	LOF	-	1.0000
MDA-MB-436	Mesenchymal-like	IDC	-	-	0.0927
CAL-148	LAR	AC	LOF	AR ⁺	0.0154
MDA-MB-453	LAR	AC	-	AR ⁺	0.0897
MFM-223	LAR	AC	LOF	AR ⁺	0.0104
BT-20	Unclassified	IDC	LOF	AR ⁺	0.0930
HCC1395	Unclassified	DC	LOF	-	0.0494

PCM-075 and abiraterone demonstrate a marked synergy across doses in AR⁺ BT-20 cells

- Aberration is a selective, irreversible inhibitor of CYP17A1, and by extension androgen synthesis.
- Abiraterone is commonly used to treat castrate resistant prostate cancer and is under clinical investigation in breast cancer.

Conclusions

- TNBC / ER Negative breast cancer cell lines are exquisitely sensitive to PLK1 inhibition
- Sensitivity to PLK1 inhibition is correlated with underlying differences in gene expression
- Additional data is needed to understand the relevance of Her2 status to this observation
- PCM-075 sensitive TNBC cell lines include cells that express the androgen receptor (AR+) and those which do not (AR-)
- Sensitivity to inhibition of androgen synthesis by abiraterone is synergistically enhanced in the presence of mitotic inhibition by PCM-075
- Further investigation of the interaction between PCM-075 and abiraterone in both AR+ and AR- TNBC is ongoing
- These findings suggest that PCM-075 may represent a therapeutic option in TNBC, particularly in combination with other compounds with which it shows synergy, such as abiraterone

Literature & Notes

- 1. Cancer Therapeutics Response Portal [portals.broadinstitute.org/ctrp]
- Hormone receptor status of each cell line established from literature and by clustering relative expression of ERBB2, ESR1, and PGR genes
- 3. Lehmann *et al.*, *J Clin. Invest.* 2011; 121(7): 2750-2767
- 4. Jiang *et al. BMC Genomics.* 2016; 17(Suppl 7): 525
- 5. Subik *et al. Breast Cancer (Aukl).* 2010; 4: 35-41
- 6. IARC TP53 Database [p53.iarc.fr]

Androgen receptor status based on immunohistochemistry.