Computationally Predicted Sensitivity of Clinical Cohorts Identifies Biomarkers Associated with Response to PCM-075, a PLK-1 Selective Inhibitor

Abstract #2810

Public data sources used in the current study:

- 1. CCLE Cancer Cell Line Encyclopedia Nature volume 483, pages 603–607 (29 March 2012)
- 2. GDSC Genomics of Drug Sensitivity in Cancer *Nucleic Acids Research*, Volume 41, Issue D1, Pages D955–D961 (1 January 2013) 3. CTRP – Cancer Therapeutics Response Portal V2 – *Cell* volume 154, Issue 5, pages 1151-1161 (29 August 2013) 4. TCGA – The Cancer Genome Atlas - http://cancergenome.nih.gov/

American Association For Cancer Research – April 14-18, 2018

Penn Whitley¹, Peter J P Croucher¹, Barbara Valsasina², Dario Ballinari², Italo Beria², Jeffrey N. Miner¹ and Mark G. Erlander¹. 1. Trovagene, Inc., San Diego 92121, CA, United States 2. Nerviano Medical Sciences, S.R.L., 20014 Nerviano, MI, Italy

Results

The gene expression profile associated with sensitivity to PCM-075 is positively enriched for pathways associated with highly proliferative/aggressive tumor growth

	Gene Set Enrichment Analysis			
geneset	description	Size	correlation	FD
hsa03010	Ribosome - Homo sapiens (human)	101	positive	0.00
hsa03008	Ribosome biogenesis in eukaryotes - Homo sapiens (human)	63	positive	0.00
hsa03013	RNA transport - Homo sapiens (human)	135	positive	0.00
hsa03040	Spliceosome - Homo sapiens (human)	118	positive	0.00
hsa03030	DNA replication - Homo sapiens (human)	32	positive	4.74
hsa03020	RNA polymerase - Homo sapiens (human)	27	positive	1.04
hsa00240	Pyrimidine metabolism - Homo sapiens (human)	88	positive	5.42
hsa04142	Lysosome - Homo sapiens (human)	116	negative	0.00
hsa04141	Protein processing in endoplasmic reticulum - Homo sapiens (human)	157	negative	0.00
hsa05110	Vibrio cholerae infection - Homo sapiens (human)	47	negative	4.17
hsa04130	SNARE interactions in vesicular transport - Homo sapiens (human)	31	negative	1.38
hsa04064	NF-kappa B signaling pathway - Homo sapiens (human)	86	negative	4.05
hsa05162	Measles - Homo sapiens (human)	125	negative	4.73
hsa00510	N-Glycan biosynthesis - Homo sapiens (human)	44	negative	4.84
hsa04672	Intestinal immune network for IgA production - Homo sapiens (human)	32	negative	5.29
hsa00600	Sphingolipid metabolism - Homo sapiens (human)	42	negative	7.69

- > Genes found during feature selection were enriched (FDR<0.01] for ribosome and rRNA processing gene ontology and KEGG pathways using hypergeometric test
- Univariate correlations of gene expression (n=17,419) with sensitivity were calculated and used in Gene Set Enrichment Analysis (GSEA). Ribosome biogenesis, and other fundamental replication and translation pathways were positively enriched (see table)
- > Tumor cells with up-regulation of replication (cell cycle), transcription and translation pathways are more sensitive to PCM-075

The top 2 genes with highest gene expression, TUBGCP4 and DVL1, are involved in mitotic activities associated with PLK1

TUBGCP4 Expression

- DVL1 and TUBGCP4 genes were the two highest ranked gene expression features found (ranked by VIF and p<0.01)
- Disheveled Segment Polarity Protein 1 (DVL1) is critical for cell division and microtubule stability. The DVL complex has been shown to be phosphorylated by PLK1
- Tubulin Gamma Complex Associated Protein 4 (TUBGCP4) is important for microtubule nucleation and is involved in the 'Regulation of PLK1 Activity at G2/M Transition' pathway
- > High TUBGCP4 expression is associated with an aggressive subtype (STEM-A) of ovarian cancer
- PCM-075 has been shown to have significant anti-tumor activity in a xenograft A2780 STEM-A cell model (not shown)

Mutation biomarkers associated with predicted sensitivity in CCLE model cell lines

- Sensitivity (AUC) was predicted for all 819 cell lines using tissue normalized gene expression profiles from CCLE
- > 1-way ANOVA was then used to search for potential driver mutations (curated by the GDSC) associated with predicted sensitivity values
- \succ 19 gene mutations show a significant association (p<.05) with predicted sensitivity and are associated with aggressive tumor growth
- ASXL1 mutations was the highest ranked potential biomarker
- Tumors with ASXL1 mutations are highly aggressive and show poor prognosis in many indications

pval	fdr	
1.21E-09	2.82E-07	
2.55E-04	2.98E-02	
2.70E-03	2.10E-01	
4.68E-03	2.61E-01	
5.59E-03	2.61E-01	
9.42E-03	3.66E-01	
1.24E-02	4.12E-01	
1.69E-02	4.91E-01	
2.14E-02	5.55E-01	
2.45E-02	5.70E-01	
2.98E-02	5.76E-01	
3.47E-02	5.76E-01	
3.59E-02	5.76E-01	
3.82E-02	5.76E-01	
3.97E-02	5.76E-01	
4.33E-02	5.76E-01	
4.39E-02	5.76E-01	
4.59E-02	5.76E-01	
4.93E-02	5.76E-01	
	pval 1.21E-09 2.55E-04 2.70E-03 4.68E-03 5.59E-03 9.42E-03 1.24E-02 1.69E-02 2.14E-02 2.98E-02 3.47E-02 3.59E-02 3.82E-02 3.97E-02 4.33E-02 4.59E-02 4.93E-02	

- Sensitivity (AUC) was predicted using gene expression data for subjects in the TCGA (n = 9968 samples)
- Selection of critical mutations was performed using random forests with mutation and CNV data
- Analysis was restricted to one of; solid tumors, prostate samples (PRAD) or Acute Myeloid Leukemia samples (LAML)
- > The solid tumor analysis resulted in CTNNB1 and KIT mutations showing the strongest effect on sensitivity and were placed at the top of a final decision tree
- A random forest analysis of AML (n = 155) resulted in selection of NPM1 (12.5% of TCGA-AML) cases) and KIT (6.9% of TCGA-AML cases). Other markers of high importance were found (e.g. FAM5C, NRAS, U2AF)
- An analysis of Prostate cancer samples (n = 320) resulted in selection of SPOP (11% of TCGAprostate cases). Other markers of high importance were TNXB, ZMYM3, BRCA2 and a CNV at 5q15 del (RGMB)

Conclusions

- A feature selection and modelling method was developed which leverages penalized regression models, bootstrapping and permutation analysis to better identify biomarkers associated with drug sensitivity
- Overall, tumor cells with hyperactive pathways in DNA replication (cell cycle), gene transcription and translation are significantly associated with increased sensitivity to PCM-075
- The top gene expression signatures associated with PCM-075 sensitivity include DVL1 and TUBGCP4, both are involved in microtubule stability and are associated with PLK1 activity
- 19 putative driver mutations were associated with predicted sensitivity across 819 cancer cell lines, including ASXL1, BCR-ABL and TP53; these mutations are associated with aggressive tumor growth and poor prognosis
- The model was used to extrapolate to a large solid tumor patient cohort and analysis was performed to find potential pan-cancer biomarkers associated with PCM-075 sensitivity. A final decision tree was constructed with these mutations suggesting a possible role for CTNNB1, KIT, FBXW7 and TP53 mutations
- A prostate and AML cohort specific analysis was also performed due to the ongoing PCM-075 clinical trials in those indications. Drivers found in both indications are critical prognostic markers (NPM1 in AML and SPOP in prostate) that may be predictive of greater PCM-075 efficacy

References

Model developed was based on Geeleher P. et al. (2017), Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Research 27: 1743-1751

Mark Erlander, PhD Trovagene, Inc. 11055 Flintkote Ave. San Diego, CA 92121

specific TCGA associations				
cation	Mutation	P-value		
1L	NPM1	2.69E-02		
1L	KIT	4.25E-02		
1L	FAM5C	8.49E-02		
1L	NRAS	1.68E-01		
1L	U2AF1	2.20E-01		
AD.	SPOP	1.80E-06		
D	TNXB	8.00E-04		
D	5q15del (RGMB)	8.30E-03		
D	ZMYM3	3.50E-03		
D	BRCA2	4.10E-03		

AML and Prostate cancer cohort