Safety, Efficacy and Biomarker Analysis of a Phase 1 Study of Onvansertib, a Polo-like Kinase 1 (PLK1) Inhibitor, in Combination with Low-Dose Cytarabine or Decitabine in Patients with Relapsed/Refractory Acute Myeloid Leukemia

Amer M. Zeidan, MBBS, MHS; Gary Schiller, MD; Tara Lin, MD; Pamela S. Becker, MD, PhD; Prapti Patel, MD; Eunice Wang, MD; Alexander Spira, MD; Michaela Tsai, MD; Maya Ridinger, PhD; Peter Croucher, PhD; Mark Erlander, PhD; Sandra Silberman, MD, PhD

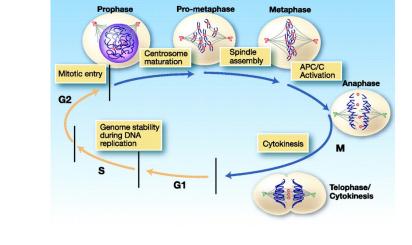
Disclosures

- A.M.Z. received research funding (institutional) from Trovagene, Celgene, Abbvie, Astex, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Incyte, Takeda, Novartis, Aprea, and ADC Therapeutics.
- A.M.Z had a consultancy with and received honoraria from Trovagene, AbbVie, Otsuka, Pfizer, Celgene, Jazz, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Astellas, Daiichi Sankyo, Cardinal Health, Taiho, Seattle Genetics, BeyondSpring, Takeda, Ionis, and Epizyme.
- A.M.Z received travel support for meetings from Pfizer, Novartis, and Trovagene.

Zeidan A et al., ASH 2019; Abstract #230 🔰 @Dr_AmerZeidan

The Polo-like Kinase 1 (PLK1), a Target for AML

► PLK1


- Serine/threonine kinase
- Master regulator of the mitotic checkpoint and cell division¹
- Overexpressed in solid tumors and hematological malignancies, including AML¹

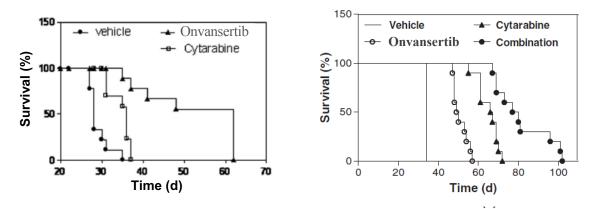
PLK1 Inhibition

- Induces G2/M arrest and subsequent apoptosis
- Inhibits tumor growth in AML mouse models²
- Preferentially blocks proliferation of leukemic cells rather than normal hematopoietic progenitors³

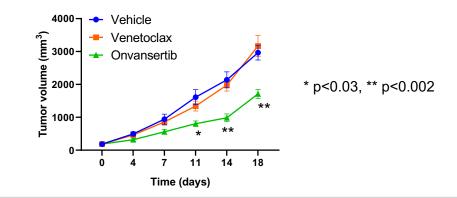
Earlier generation PLK inhibitors in the clinic

- Volasertib: pan-PLK ATP-competitor inhibitor with a ~5 days half-life
- Phase 2 randomized study of volasertib + LDAC showed a significant increase in overall survival in comparison to LDAC alone⁴. However, the Phase 3 study was negative⁵.

-3


Onvansertib, a Highly Selective PLK1 Inhibitor with Anti-Tumor Activity in AML Preclinical Models

Onvansertib


- PLK1-selective ATP-competitive inhibitor
- Orally-bioavailable
- ~24-hour half-life
- Onvansertib in AML preclinical models
 - Inhibits cell line proliferation at nanomolar concentrations
 - Inhibits tumor growth in xenograft models as a single agent and in combination with cytarabine⁶
 - Inhibits cell proliferation and tumor growth in venetoclax-resistant models

⁶ Valsasina et al., Mol Cancer Ther. 2012 Apr;11(4):1006-16

Survival in AML Disseminated Models

Tumor Growth in a Venetoclax-Resistant Subcutaneous Model (OCI-AML3)

Onvansertib in AML: a Multicenter Phase 1b/2 Study (NCT03303339)

Main eligibility criteria

- Relapsed and refractory AML patients who have received ≤3 prior treatment regimens
- Treatment-related AML or APL excluded
- ECOG ≤2

Dosing schedule

- Onvansertib for 5 days + decitabine
 20 mg/m² IV for 5 days OR low dose
 cytarabine (LDAC) 20 mg/m² SC for 10days
- 21-28-day cycles

Dose escalation (3 + 3 design)

- 50% incremental dose increase in successive cohorts of 3 patients
- Dose limiting toxicities (DLTs) evaluated during the 1st cycle

Primary and secondary objectives

- Assess safety (incidence and severity of AEs)
- Define dose-limiting toxicities (DLTs)
- Define MTD or RP2D
- Evaluate preliminary anti-leukemic activity

Exploratory objectives

- Assess PLK1 inhibition (target engagement) by measuring changes in the PLK1 substrate pTCTP
- Evaluate predictive biomarkers associated with response to treatment

Phase 1b Patient Characteristics and Treatment Summary Data Cutoff: October 31st, 2019

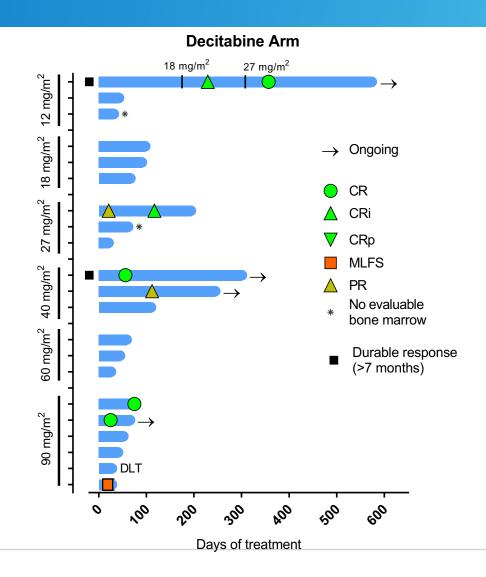
Patient Baseline Characteristics	Value: n Median (range) or n (%)
Patients	40
Age	68 (33-88)
Male gender	28 (70)
ECOG performance status	1 (0-2)
Prior AML therapies	1 (0-3)
0	5 (13)
1	20 (50)
2+	15 (38)
Prior cytarabine treatment	24 (60)
Prior decitabine treatment	10 (25)
Cytogenetic risk	
Favorable	3 (8)
Intermediate	10 (25)
Adverse	23 (58)
Unknown	4 (10)
Bone marrow blasts	26 (5-95)

Treatment Summary	Decitabine	LDAC
Patients - n	23	17
First patient enrolled	April 2018	Feb 2018
Last patient enrolled	Aug 2019	Jun 2019
Cycles, median (range)	2 (0-18)	2 (0-8)
Time on study, median days (range)	63 (15-574)	44 (11-318)
Onvansertib maximum dose - mg/m ²	90	60
Patients at maximum dose - n	6	3
Number of DLTs - n	2	0
MTD or RP2D - mg/m ²	60	60

Mutation Profiling (n=40)

ASXL1	TP53	SRSF2	NRAS	NPM1	DNMT3A	FLT3 ITD	SF3B1	IDH2	RUNX1
20%	20%	18%	18%	10%	10%	8%	8%	8%	5%
SETBP1	U2AF1	FLT3 TKD	CEBPA	KRAS	CBL	CSF3R	PHF6	GATA2	TET2
5%	5%	5%	3%	3%	3%	3%	3%	3%	3%

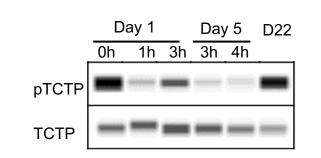
Safety Summary Patients Treated with at Least 1 Dose (n=40) Data Cutoff: October 31st , 2019


- Treatment was well tolerated through the 5 first dose levels: $12 - 60 \text{ mg/m}^2$
- 2 of the 6 patients treated with onvansertib 90 mg/m² + decitabine experienced a DLT: G3 mucositis and G4 skin lesion
- Subsequently, the MTD was established at 60 mg/m²
- Grade 3/4 AEs possibly related to onvansertib were primarily on-target hematological events
- G3 stomatitis was the only non-hematological G3/G4 AE possibly related to onvansertib reported in more than 1 patient (1 at 60 mg/m²) and 2 at 90 mg/m²)
- 9 of the 71 SAEs (13%) were considered as possibly related to onvansertib and occurred at the higher dose levels: 40 mg/m² (1), 60 mg/m^2 (1) and 90 mg/m^2 (7)
- Five deaths occurred during study, however none were attributed to study treatment

Adverse Event	Grade 1-2	Grade 3-4	Total (%)
Anemia	1	14	15 (37.5)
Fatigue	14		14 (35)
Febrile neutropenia		12	12 (30)
Nausea/vomiting	12		12 (30)
Thrombocytopenia	2	10	12 (30)
Dyspnea	8	2	10 (25)
Neutropenia		10	10 (25)
Rash/Pruritus	9		9 (22.5)
Stomatitis	4	5	9 (22.5)
Diarrhea	8		8 (20)
Edema	6	2	8 (20)
Constipation	6		6 (15)
Cough	6		6 (15)
Decreased appetite	6		6 (15)
Epistaxis	6		6 (15)
Dizziness	5		5 (12.5)
Pyrexia	5		5 (12.5)
WBC decrease		5	5 (12.5)
Blood bilirubin increased	3	1	4 (10)
Headache	4		4 (10)
Lung infection		4	4 (10)
Oropharyngeal pain	4		4 (10)

Preliminary Efficacy Patients Treated with ≥ 1 Cycle (n=36) Data Cutoff: October 31st, 2019

- 6 (17%) patients had a complete response (CR, CRi);
 9 (25%) had an ORR (CR, CRi, MLFS, PR) across LDAC and decitabine arms and doses
- At the 4 higher dose levels (27 to 90 mg/m²), CR/CRi was observed in:
 - 5 (31%) of the 16 patients in the decitabine Arm
 - 1 (11%) of the 9 patients in the LDAC Arm
- Median time to achieve CR/CRi was 4 cycles (range 1-7)
- Median duration of response was 5 months (range 0-11.5)
- 4 of the 6 patients remain on treatment and in remission
 - Duration of CR/CRi is respectively: 1.5, 7, 8 and 11.5 months
- 2 of the 6 responders discontinued treatment:
 - 1 patient proceeded to transplant following CR
 - 1 patient progressed 2.5 months following CRi

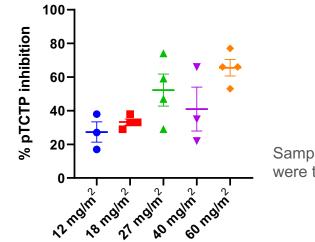

Characteristics of Responders

- Elderly population: median age 75 years (51–83)
- Treatment naïve (but treated for prior MDS), relapsed and refractory patients:
 - 2 patients were treatment naïve for AML, but had received azacitidine for MDS
 - 4 patients had prior induction therapy (3 relapsed, 1 refractory)
- No specific mutation or karyotype was found to be associated with response to treatment
 - Different cytogenetic risk profiles: favorable (1), intermediate (2), adverse (2), unknown (1)
 - Mutations: NRAS SF3B1 FLT3 TKD FLT-ITD SRSF2 ASXL1 DNMT3 NMP1 IDH2 2 2 1 1 1 1 1 1
- Response was observed:
 - At a wide range of onvansertib doses: 27 mg/m² (2), 40 mg/m² (2), 90 mg/m² (2)
 - Primarily in combination with decitabine (n=5 in decitabine Arm vs n=1 in LDAC Arm)

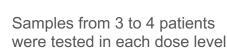
Onvansertib Inhibits Phosphorylation of the PLK1 Target TCTP in a Plasma Inhibitory Activity Assay

- The translational controlled tumor protein, TCTP is a direct target of PLK1^{6,7}
- Plasma Inhibitory Activity (PIA) assay: an AML cell line was incubated with patient plasma collected pre- and post onvansertib treatment and changes in phosphorylated TCTP were assessed by Western-Blot
- pTCTP was downregulated by on-treatment plasma (Days 1 and 5), but not by plasma with undetectable onvansertib level (Day 22)
- pTCTP inhibition at post-dose (day 1) relative to pre-dose was observed for all doses
- Greater pTCTP inhibition was positively correlated with increasing dose levels

⁶ Valsasina et al., Mol Cancer Ther. 2012 Apr;11(4):1006-16 ⁷ Cucchi et al., Anticancer Res. 2010 Dec;30(12):4973-85



2000 1.2 1.00 0.98 1.0 Onvansertib 1500 0.8 concentration (ng/mL) 1000 0.6 0.32 0.4 0.23 0.20 500 0.16 0.2


022

pTCTP/TCTP Relative to Day 1 Pre-Dose

pTCTP Inhibition at Post-Dose (Day 1) Relative to Pre-Dose

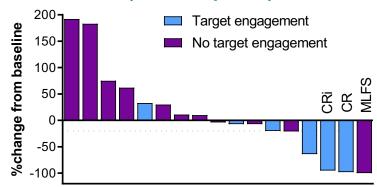
$\mathbf{e} \qquad \begin{array}{c} \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7} \\ \mathbf{0}_{7} \quad \mathbf{0}_{7}$

Copyright © 2019 Trovagene, Inc.

0.0

Target Engagement in Circulating Blasts is Associated with Response to Treatment with Onvansertib

- pTCTP/TCTP was assessed in PBMCs isolated from blood tubes collected on Day 1 at pre-dose and 3h post-dose
- Target engagement (TE) was evaluated in patients with ≥10% circulating blasts (n=24) and defined as a decrease of ≥50% in pTCTP/TCTP at 3h post-dose versus 0h
- ▶ 8 (33%) of the 24 evaluable patients showed target engagement
- TE was not dependent on onvansertib dose, pharmacokinetics or combination treatment (LDAC or decitabine)
- Among patients with at least 1 BM biopsy (n=17), TE was associated with higher response to treatment:
 - 67% TE patients (4/6) had a ≥20% decrease in blasts versus 18% in non-TE patients (1/11)
 - CR/CRi was achieved in 2 TE patients but in none of the non-TE patients


Target Engagement

	12mg/m ²			27mg/m ²			40mg/m ²			
	01	-002	07-	009	08	-027	05-	030	11-	040
	0h	3h	0h	3h	0h	24h	0h	3h	0h	3h
pTCTP	-		-			-			-	
тстр	_	_	-	-		-	-	_	-	_

No Target Engagement

	12m	g/m ²	27mg	g/m²	40mg/m ²
	07-004 07-013		01-024	07-033	12-041
	<u>0h 3h</u>	0h 3h	0h 3h	<u>0h 3h</u>	0h 3h
ptctp	_				
ТСТР					

Waterfall Plot of BM Blast Change From Baseline (Best Response)

Conclusions Phase 1b Study of Onvansertib in AML

Safety: onvansertib treatment was well tolerated

- MTD/RP2D was established at 60 mg/m² in both arms and no DLT was observed through this dose level
- Onvansertib-related toxicities were primarily on-target hematological events, in accordance with its mechanism of action and prior Phase 1 clinical study

Efficacy: complete response (CR/CRi) was observed in 6 patients

- At a wide range of onvansertib doses: 27 mg/m² (2), 40 mg/m² (2), 90 mg/m² (2)
- Primarily in combination with decitabine (n=5 in decitabine Arm vs n=1 in LDAC Arm)
- CR/CRi rate was 31% (5/16) in patients treated with onvansertib 27-90 mg/m² in combination with decitabine

Pharmacodynamic and biomarker analysis:

- Onvansertib-plasma inhibitory activity was observed through all doses and positively correlated with increasing doses
- Target engagement in circulating blasts was observed in a subset of patients and was associated with an increase in response to treatment as measured by decrease in BM blasts and rate of CR/CRi
- Phase 2 has started enrolling and will include 32 patients to further assess the safety, efficacy, target engagement and correlation with response of onvansertib 60 mg/m² in combination with decitabine

Thank You!

Zeidan A et al., ASH 2019; Abstract #230 🎾 @Dr_AmerZeidan