Plasma-derived Circulating Tumor DNA (ctDNA) As a Surrogate Biomarker for Treatment Response with the Polo-like Kinase 1 (PLK1) Inhibitor, Onvansertib, in Combination with LDAC or Decitabine in Acute Myeloid Leukemia (AML)

Background

Polo-like Kinase 1 (PLK1):

- Serine/threonine kinase, master regulator of cell-cycle progression
- Inhibition of PLK1 causes mitotic arrest in prometaphase and subsequent cell death
- Overexpressed in solid tumors and hematological malignancies, including AML

Onvansertib (also known as PCM-075 and NMS-1286937):

- Orally-bioavailable, highly-selective PLK1 inhibitor with a ~24-hour half-life
- Potent anti-tumor activity in AML preclinical models^{1,2}
- Ongoing clinical trials for relapsed or refractory AML, metastatic castration-resistant prostate cancer and metastatic colorectal cancer

Genomics of Acute Myeloid Leukemia (AML)

- In AML, blast cells carrying a driver mutation in the bone marrow (BM) migrate into circulation in the peripheral blood (PB)
- Hematologic mutations are detectable in a majority of AML patients, and are reported to persist in over 50% of patients during complete remission (CR)³

Circulating Tumor DNA (ctDNA)

Recently ctDNA has been used as a biomarker for monitoring tumor heterogeneity, treatment response, minimal residual disease and disease progression⁴

Phase 1b/2 Trial Design

Phase 1b/2 Trial (NCT03303339) of Onvansertib in Combination with either Low-Dose Cytarabine or **Decitabine in Patients with Relapsed/Refractory Acute Myeloid Leukemia**

Study design

Dosing schedule:

Onvansertib x 5 days + either Low-dose Cytarabine (LDAC – 20 mg/m² SC qd x 10d) or Decitabine (20 mg/m² IV qd x 5d) in a 21 to 28 – day cycle

Dose escalation in Phase 1b (3+3 design) with expansion cohort at the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) for Phase 2

Study Primary Objectives

- Phase 1b: Assess safety, define dose-limiting toxicities (DLTs) and MTD/RP2D
- Phase 2: Assess safety, tolerability and preliminary anti-leukemic activity at the MTD (or RP2D)

Key Eligibility Criteria

- Patients with relapsed/refractory AML who have received ≤3 prior treatment regimens
- Treatment-related AML or APL are excluded
- ECOG performance status ≤2

Methods and Patients Characteristics

Sample Collection

- BM aspirates were collected at screening, at the end of cycles 1, 2 and then every other cycle
- Blood samples were collected on Days 1 (pre-dose), 5, 8, 15, 22 of each cycle
- Genomic DNA was extracted from peripheral blood and bone marrow mononuclear cells (PBMCs & BMMCs, respectively) and ctDNA was isolated from plasma

Molecular Profiling

- A targeted NGS assay covering 75 genes was used to identify driver mutations
- A ddPCR assay targeting an identified driver mutation was used to enumerate mutant allele frequencies in Plasma (ctDNA), PBMCs, and BMMCs

Patient Characteristics

- 40 patients enrolled in the Phase 1b were analyzed by targeted NGS, median number of genes with variants identified was 3 [range 1 - 7]
- Among them, 20 patients were chosen for subsequent ctDNA analysis
- Clinical response was evaluated by patient's pathologist using bone marrow aspirate
- **Responders** were defined as patients achieving complete response (BM blasts <5%) with or without count recovery (CR+CRi)

,			(%)	Cytogenetic Risk	Ν	(%
	Responders	6	30%	Favorable	2	10
				Intermediate	6	30
	Non-Responders	14	70%	Adverse	9	45
				Unknown	3	15

Errin Samuëlsz¹; Latifa Hassaine¹; Marion Luebbermann¹; Brittany Ross¹; Peter Croucher, PhD¹, Mark Erlander, Phd¹; Maya Ridinger, PhD¹ ¹Trovagene, Inc., San Diego, CA;

ctDNA as a Predictive Biomarker

- Plasma-derived ctDNA MAF Highly Correlates with MAF from Bone Marrow Mononuclear Cells
- Mutation allelic frequencies (MAF) in ctDNA from plasma, and gDNA from BMMCs and PMBCS were assessed for 20 patients across timepoints (Plasma, BM, PB).
- Linear regression, and a paired two sample t-test were performed for all timepoints with matched samples. When plotted, MAF from plasma and BM showed the highest linearity (R² = 0.8366) and no significant difference from BM (P=0.2205) when comparing 49 matched samples.
- These data suggest plasma is most representative of disease state in BM, and may be use to monitor response to treatment

Responders Have a Greater Range of ctDNA MAF than Non-responders

- As plasma was most correlative with BM, we aimed to explore if changes in plasma MAF differed between patients with clinical response (CR/CRi) and non-responders.
- The change in MAF over all timepoints available for each patients was log transformed: Log₂(Max/Min), where Max is highest MAF of all timepoints, and Min is the lowest MAF of all timepoints.
- A t-test was performed between **responders** (n=6) and non-responders (n=14) to determine if ctDNA range distinguished the groups
- There was a significant difference between the two groups (P=0.002), further supporting ctDNA as a biomarker for treatment response.

Plasma-derived ctDNA is a Predictive Biomarker for Treatment Response to Onvansertib

- We aimed at determining the utility of plasma MAF to predict clinical response after the 1st cycle of treatment
- MAF were assessed in ctDNA before beginning treatment (C0) and after 1 cycle of treatment (C1) when BM aspirates were collected; and change in MAF calculated as $Log_2(C1/C0)$.
- Similarly changes in % BM blasts at end of cycle 1 versus screening were calculated as Log₂(C1/C0).
- All patients with clinical response (CR+CRi, n=6) showed a decrease in ctDNA MAF at cycle 1 (Log₂(C1/C0) < -0.05), while only 2 of the</p> 14 non-responders (NR) showed a similar decrease.
- Measuring the changes in plasma over the first cycle predicted patient response with 90% diagnostic accuracy, 100% sensitivity and 86% specificity, with positive predictive value (75%) and negative predictive value (100%) supporting the utility of this analysis
- Conversely, the same analysis in BM Blasts at Cycle 1 were not predictive of clinical response

Patient	ctDNA MAF	BM % Blasts Log ₂ (C1/C0)	Clinical Response	Screening	; test using	ctDNA MA	AF after 1	cycle	
						Clinical R	esponse		
01-021	0.2193	-0.8625	NR			Responder	NR		1
01-024	0.0489	-0.3219	NR	Plasma	Responder	6	2	PPV	75%
03-037	-0.0853	0.8301	Responder	Prediction	NR	0	12	NPV	100%
05-016	0.5850	3.0704	NR				86%	-	
05-030	-0.4258	-2.0000	Responder			Sensitivity	Specificity		
05-043	-0.0299	-0.4150	NR			90%	Diagno	stic ac	curacy
07-009	-0.3303	-0.0468	Responder			7.0	Positive l	ikeliho	od ratio
07-013	0 3182	N/A	NR			0.0	Negative	likelih	ood ratio
07-018	0.0015	N/A	NR	Screening	g test using	; % BM blas	sts after 1	cycle	
07-033	-0.0200	, N/A	NR			Clinical I	Response		
07-035	-0.1410	-1.7370	Responder		1	Responder	NR		
07-036	0.2940	-1.0000	NR	BM	Responder	3	5	PPV	38%
08-027	-0.0096	-0.1043	NR	ricultion	NK	50%	<u>5</u> 5%		67%
08-058	-1.4399	0 9329	Responder			Sensitivity	Specificity	_	
09-026	0 3531	0 3785	NR			· · ·	· · · ·	_	
	0.3531	0.3703				53%	Diagno	stic ac	curacy
09-052	0.2554	0.1454				1.10	Positive l	ikeliho	od ratic
09-064	-1.6881	-3.9069	Kesponder			0.9	Negative	likelin	ood ratio
11-019	0.0000	0.0000	NR	• Sonsitivit	$v = \frac{TP}{TP}$	•	Diganostic Acc	uracy (I	$(A) = \frac{TH}{TH}$
11-040	-0.3411	0.4021	NR		(TP+FN)				TP+TN
12-041	-0.1515	0.6951	NR	• Specificit	$y = \frac{1N}{(TN+FP)}$	•	Positive Likelik	100d Rat	tio(PLR) =
	N = 20	N = 17	NR = Non-responder	• Positive F	Predictive Value(F	$(PPV) = \frac{TP}{(TP+FP)}$ •	Negative Likel	ihood Ra	ition (NLR)
				• Negative	Predictive Value($NPV) = \frac{TN}{(TP+TN)}$			

REFERENCES: ⁴ Yeh et al., Blood, 2017;129(12):1685-90

Non-Responders = 14 P = 0.002

 $R^2 = 0.7117$

80.0

Earlier Treatment Decisions from Serial Monitoring of ctDNA

- Plasma-derived ctDNA Enables Monitoring of Treatment Response and Disease Progression
- Twenty (20) patients were chosen for ctDNA monitoring. • For each, plots were generated overlaying ctDNA MAF and %BM blasts by date of sample collection.
- Of 6 patients who reached CR/CRi (Δ), all showed the lowest ctDNA MAF at or before (13-35 days) determination of clinical response.
- determination of progression.
- Patient 05-030 case:
 - Minimum ctDNA MAF was reached 34 days prior to CR diagnosis
 - A spike in ctDNA MAF was detected 53 days before progression, with a maximum MAF at the time of progression
- Patients with stable disease also show ctDNA trends resembling the bone marrow Patients who responded to treatment showed a ctDNA MAF trend that decreased, while those who
- progressed showed an increasing trend.
- ctDNA MAF is capable of monitoring both clinical response and disease progression, and often prior to the bone marrow biopsy

- treatment response • Change in ctDNA MAF after the 1st cycle of treatment was highly predictive of response to onvansertib:
- Serial monitoring in plasma provides a less-invasive alternative to bone marrow, often enabling earlier detection of clinical response or progression:

• Minimum ctDNA MAF was measured at or before remission, while maximum ctDNA MAF was measured at or before progression • Patients enrolled in the Phase 2 section will be analyzed to further validate the utility of ctDNA as a biomarker for onvansertib-response and a

surrogate for BM biopsy

Similarly, 4 patients with Progressive disease (PD, \spadesuit), displayed a maximum ctDNA MAF at or before

(Days before PD)				
24				
14				
0				
0				

Conclusions

Mutant allele frequency in plasma-derived ctDNA was highly correlated with MAF in gDNA from BM cells (R² = 0.8366)

• Patients with clinical response (CR/CRi) showed bigger changes in ctDNA MAF than non-responders, suggesting that ctDNA changes can be used as a surrogate for

- All patients achieving CR/CRi (n=6) had a decrease in ctDNA MAF after 1 cycle (Log₂(C1/C0) < -0.05)
- 86% of the non-responders (12 out of 14) showed no decrease in ctDNA MAF after 1 cycle