

Turning the Tide on Cancer

November 2020

_ _ _

Forward-Looking Statements

Certain statements in this presentation are forward-looking within the meaning of the Private Securities Litigation Reform Act of 1995. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern our expectations, strategy, plans or intentions. These forward-looking statements are based on our current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, our need for additional financing; our ability to continue as a going concern; clinical trials involve a lengthy and expensive process with an uncertain outcome, and results of earlier studies and trials may not be predictive of future trial results; our clinical trials may be suspended or discontinued due to unexpected side effects or other safety risks that could preclude approval of our product candidates; risks related to business interruptions, including the outbreak of COVID-19 coronavirus, which could seriously harm our financial condition and increase our costs and expenses; uncertainties of government or third party payer reimbursement; dependence on key personnel; limited experience in marketing and sales; substantial competition; uncertainties of patent protection and litigation; dependence upon third parties; our ability to develop tests, kits and systems and the success of those products; regulatory, financial and business risks related to our international expansion and risks related to failure to obtain FDA clearances or approvals and noncompliance with FDA regulations. There are no guarantees that any of our technology or products will be utilized or prove to be commercially successful. Additionally, there are no guarantees that future clinical trials will be completed or successful or that any precision medicine therapeutics will receive regulatory approval for any indication or prove to be commercially successful. Investors should read the risk factors set forth in our Form 10-K for the year ended December 31, 2019, and other periodic reports filed with the Securities and Exchange Commission. While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Forward-looking statements included herein are made as of the date hereof, and we do not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Investment Highlights

3rd Generation, 1st-in-class, Oral PLK1 Inhibitor

Onvansertib overcomes the shortcomings of prior PLK inhibitors:

- Highly selective for PLK1
- · Orally administered
- 24-hour half-life
- Flexible dose and schedule

Specifically targets a known mechanism of cell division that is required for tumor cell viability

Preliminary clinical data demonstrate the safety, tolerability and efficacy of onvansertib in combination with SOC across multiple indications

Strong Lead Program in KRAS-mutated mCRC

Supported by compelling preliminary clinical data from a Phase 1b/2 trial showing a ten-fold improvement in ORR compared to SOC

Preclinical data support:

- MOA of synthetic lethality between KRAS mutant mCRC and PLK1 inhibition
- Synergy with irinotecan and 5-FU

First Indication: 2nd line treatment in patients who have failed 1st line treatment with FOLFOX with/without bevacizumab

Integrated Biomarker Strategy

Circulating Tumor DNA: changes in KRAS mutational burden in blood are predictive of subsequent tumor shrinkage (mCRC)

Circulating Tumor Cells: changes are predictive of overcoming antiandrogen resistance (mCRPC)

Circulating Tumor DNA: changes are predictive of decreases in leukemic bone marrow cells (AML)

Diversified Pipeline Across Numerous Cancers

Clinical data from ongoing trials support the use of onvansertib in combination regimens across numerous aggressive cancers:

- mCRC Phase 1b/2 trial
- mCRPC Phase 2 trial
- AML Phase 2 trial

Potential expansion opportunities:

- Chronic myelomonocytic leukemia
- Pancreatic cancer
- Triple negative breast cancer
- Lung cancer
- Ovarian cancer

PLK: Polo-like Kinase; SOC: Standard-of-care; ORR: Overall response rate; MOA: Mechanism of action; mCRC: metastatic colorectal cancer; mCRPC: metastatic castration resistant prostate cancer; AML: Acute myeloid leukemia

Experienced Management Team With Drug Development and Biomarker Technology Expertise

Mark Erlander, PhD Chief Executive Officer

Vicki Kelemen Chief Operating Officer

Bayer HealthCare

Pharmaceuticals

Brigitte Lindsay Vice President of Finance

Pipeline and Upcoming Catalysts

	Indication	Preclinical	Phase 1b	Phase 2	Next Milestone
Onvansertib	mCRC	Onvansertib + FOLFIRI/Avas Mutated Metastatic Colorecta	etin [®] in Second-Line KRAS- al Cancer		Q1 2021 ASCO-GI
Solid Tumor Programs	mCRPC	Onvansertib + Zytiga [®] (abirat Castration-Resistant Metasta	terone)/prednisone in Zytiga-R atic Prostate Cancer	esistant	Q1 2021 ASCO-GU
Onvansertib Hematologic Programs	AML	Onvansertib + Decitabine in I	Relapsed/Refractory Acute My	reloid Leukemia	Q4 2020 ASH

Onvansertib

3rd generation, 1st in class, oral and highly selective PLK1 inhibitor addressing unmet needs across a broad range of cancer indications

PLK1 is a Proven Therapeutic Target that is Overexpressed in Most Cancers

- PLK1 is a serine/threonine kinase and master regulator of cell-cycle progression
- PLK1 controls G2/mitosis (G2/M) checkpoint
- Inhibition of PLK1 causes mitotic arrest and subsequent cell death
- Emerging data demonstrate that PLK1 is also a key regulator of cellular functions beyond mitosis that are essential for tumor growth:
 - Biosynthesis of DNA
 - DNA Damage Response

Inhibition of PLK1 causes mitotic arrest and subsequent cell death¹

PLK1-Specific ATP Competitive Inhibitor¹

Biochemical Profile		Profile Characteristics		Co-crystal of Onvansertib with PLK1	
Enzyme	IC ₅₀ (μΜ)	Small Molecule	MW 648.60 Daltons		
PLK1	0.002	Formulation	5mg and 20mg oral gelcaps	Arg57	
PLK2	>10	Plasma Protein Binding	95% at 10µM and 91% at 50µM	Leu132 Cys67 Lys82	
PLK3 CK2	>10		Moderate intrinsic clearance (9.3 mL/min/kg) ¹		
FLT3 CDK1/CycB	0.4 3.8	Metabolic Overview	2 metabolites identified in metabolic profiling in low quantities (parent drug accounted for 93% of total drug-related	Arg134	
42 additional kinases in house	>10		material) ¹	Phe183 Asp194	
>190 additional kinases in the Millipore panel	>10		No Cytochrome P450 inhibition at therapeutic concentrations ²	GUITAD	
		Pharmacokinetics ³	Systemic exposure of drug increased with dose, as shown by an increase in C_{max} and AUC_{0-24}	Substituted by His in PLK2 and PLK3	
			T _{max} is approximatively 3h		
			Half-life is approximately 24h		

A selective, ATP competitive PLK1 inhibitor

Onvansertib

Cardiff Oncology[™]

- - Selectivity is driven by polar interaction with the side chain of Glu140 of PLK1
 - Interaction is hampered in both PLK2 and PLK3 where Glu140 is replaced by histidine

¹Valsasina Mol Cancer Ther 2012

2020 Corporation Presentation | 8

Onvansertib has Optimal Drug Properties and Synergistically Combines with Standard-of-Care Therapies

⊂ Cardiff Oncology™

Second-Line Treatment of KRAS-Mutated mCRC

Phase 1b/2 open-label trial of onvansertib + FOLFIRI/bevacizumab

Trial Sites: USC Norris Comprehensive Cancer Center; Mayo Clinic Cancer Centers Principal Investigator: Dr. Heinz-Josef Lenz

New Second-Line Therapies are Needed to Improve Response and Increase Progression-Free Survival

50% of patients with mCRC have a KRAS mutation

Prognosis is poor with a fiveyear survival rate of **10%** Other drugs currently in development do not address the most prevalent KRAS mutations in mCRC

Oncology

Significant limitations to standard-of-care (SOC)

Current second-line standard-of-care treatment in KRAS-mutated mCRC has an overall response rate of 4% and progression-free survival (PFS) of 5.5 months¹

KRAS is a Pivotal Diagnostic Biomarker in the CRC Treatment Paradigm

- KRAS-mutated patients do not benefit from anti-EGFR agents:
 - No increase in OS, PFS and ORR was observed in KRAS mutant patients treated with EGFR inhibitors vs control arm^{1,2}
 - The use of anti-EGFRs is therefore limited to KRAS wild-type patients
- Mutations in KRAS represent also the most frequent mechanism of resistance to anti-EGFRs (i.e. cetuximab)

Second-line Treatment: Real World Utilization in the US

Flatiron Health Data

255

Cancer clinics representing 1.7 million active cancer patients

14,315 Colorectal cancer patients

7,034 Colorectal cancer patients who receive second line therapy

	Number	Percent
Second-line regimens after first-line FO	DLFOX + bevaci	zumab (N = 2470)
FOLFIRI + bevacizumab	1176	47.6
FOLFIRI	262	10.6
FOLFIRI + cetuximab	159	6.4
FOLFIRI + Ziv-aflibercept	114	4.6
FOLFIRI + panitumumab	91	3.7
Irinotecan + cetuximab	85	3.4
FOLFIRI + ramucirumab	74	3.0
Irinotecan + bevacizumab	53	2.1
Regorafenib	33	1.3
Irinotecan	30	1.2
Panitumumab	27	1.1
Second-line regimens after first-line F	OLFOX $(N = 12)$	49)
FOLFOX + bevacizumab	373	29.9
FOLFIRI	235	18.8
FOLFIRI + bevacizumab	210	16.8
Fluoropyrimidine + bevacizumab	85	6.8
FOLFIRI + cetuximab	43	3.4
FOLFOX + panitumumab	37	3.0
Irinotecan + cetuximab	24	1.9
FOLFIRI + panitumumab	23	1.8
FOLFOX + cetuximab	22	1.8
Bevacizumab	17	1.4
Irinotecan	15	1.2
Panitumumab	15	1.2
FOLFOXIRI + bevacizumab	14	1.1

 Denotes combination with bevacizumab
 Denotes combination with other antiangiogenics

Source: Hess, L. International Journal of Colorectal Disease; 2019. Data is limited to limited to second-line regimens used in >1% of the cohort. FOLFOX: fluoropyrimidine, leucovorin, oxaliplatin. FOLFIRI: fluoropyrimidine, leucovorin, irinotecan, FOLFOXIRI: fluoropyrimidine, leucovorin, irinotecan, oxaliplatin

Outcomes for patients in the 2nd line setting is poor

- Efficacy of FOLFIRI: 4% ORR and 2.5 months PFS¹
- Addition of bevacizumab to FOLFIRI improves outcomes²
- However, while KRAS WT patients benefit from the addition of bevacizumab, there was no statistically significant improvement in OS for KRAS-mutant patients³

KRAS	Treatment	ORR	PFS (months)	HR and significance of PFS	OS (months)	HR and significance of OS
KRAS WT	FOLFIRI	5%	4.5	HR=0.61	11.1	HR=0.61
	FOLFIRI + Bev	7%	6.4	(95 % CI 0.49-077) P <0.0001	15.4	(95 % CI 0.53-0.90) P=0.0052
KRAS	FOLFIRI	3%	4.1	HR=0.70	10	HR=0.92
MUTANT	FOLFIRI + Bev	4%	5.5	(95 % CI 0.56-0.89) P = 0.0027	10.4	(95 % CI 0.71-1.18) P=0.4969

¹Tournigand et al., JCO 2004;22(2):229-3; ²Bennouna et al., Lancet Oncol. 2013; 14(1):29-37; ³Kubicka, S, Annals of Oncology 2013, 24:2342-2349; CI: confidence interval, HR: hazard ration, ORR: objective response rate, PFS: progression-free survival, OS: overall survival, WT: wild-type, MUT: mutant

The anti-angiogenic agents aflibercept and ramucirumab have been approved in combination with chemotherapy in 2nd-line treatment, although they are used to a much lesser extent than bevacizumab

Trial	Agent/ARM	Patients	ORR	95% CI of ORR (%)
VELOUR Sub-group ¹ (received first line therapy and bevacizumab)	FOLFIRI + aflibercept	643 (325 FOLFIRI +aflibercept)	11.8%	6.7 - 16.9
RAISE ²	FOLFIRI + ramucirumab	1361	13.4%*	10.7- 16.6

* 20% of patients were Asian, which has higher response rate

Synthetic Lethality: Cells with KRAS Mutations are Hypersensitive to Inhibition of PLK1

The output of the RAS-mutated pathway activates PLK1, which is inhibited by onvansertib

Cell Viability in Onvansertib-Treated KRAS Mutant and Wild Type Isogenic CRC Cells

PLK1 and RAS Cooperative Relationship

RAS activates PLK1 through a MEK/ERK-independent mechanism

The downstream target of KRAS, pCRAF, localizes to the mitotic spindle poles at mitosis where it interacts with PLK1 and promotes PLK1 activation, leading to mitosis and tumor progression¹

Data suggest that KRAS-activated cells are dependent on PLK1 for their proliferation and survival and inhibition of PLK1 by onvansertib could inhibit tumor growth

Cardiff Oncology™ ¹Mielgo et al., Nat. Med. 2011; 17(12):1641-5

Onvansertib works synergistically in combination with standard-of-care FOLFIRI (irinotecan and 5-FU)

PLK1 Regulates DNA Damage Response^{1,2}

Cardiff Oncology[™] 1van Vugt & Yaffe, Cell Cycle 2010 9:2097-2101; ²van Vugt et al., 2010, PLoS 8:1-19

Phase 1b/2 Open Label Trial of Onvansertib + FOLFIRI/bevacizumab

Trial Design

Efficacy Endpoints

- Overall response in patients who receive ≥1 cycle (2 courses) of treatment
- Progression-free survival (PFS)
- Decreases in KRAS mutation burden and response to treatment

What is Clinical Trial Success

- ≥5 of 26 (~20%) patients achieve clinical response confirmed by radiographic scan
- Achieve median progression-free survival of \geq 6 months

Compelling Preliminary Efficacy Data

- 10 of 11 (91%) patients had clinical benefit:
 - 5 (45%) patients achieved a partial response (PR)
 - 4 patients had a confirmed PR (≥ 30% tumor shrinkage) with 1 patient going on to curative surgery
 - 1 patient with an initial PR went off study prior to confirmatory scan due to nontreatment related event

Response Appears Durable

- 8 (73%) patients had durable responses of >6 months (range 6 to >12 months); 4 patients remain on treatment; median PFS has not yet been reached
- Only 1 patient progressed in <6 months while on treatment

ardiff Oncology M PFS: Progression-free survival

Monitoring KRAS mutations in plasma ctDNA may enable rapid predictions of therapeutic response

- KRAS mutant allelic frequency (MAF) was measured by digital droplet PCR (ddPCR) at baseline and at the end of Cycle 1
 - 9 of 11 patients had a KRAS variant detected by ddPCR at baseline*
 - All patients showed a decrease in KRAS MAF after the 1st cycle of treatment
- The greatest changes in KRAS were observed in patients achieving a PR (ranging from -78% to -100%)
- The patient with disease progression had only a 55% decrease in KRAS mutant allelic frequency

% KRAS MAF Changes After Cycle 1

- Program initiated in June 2020
- 15 sites participating across the US as of October 30
- Eligibility criteria includes:
 - Patients not meeting clinical trial inclusion criteria
 - Patients who have received 2 or more lines of prior treatment
 - Patients who have previously been treated with FOLFIRI (with or without bevacizumab)
- 19 patients treated to-date; most were progressing on treatment with FOLFIRI/bevacizumab prior to enrolling
- Changes in KRAS mutational burden is being analyzed pre-dose and at the start of each cycle of treatment

# of Sites	# of Patients Treated To-Date	# of Patients Pending Treatment
15	19	3

Positive Phase 1b/2 results may provide an opportunity for a Phase 2b registrational trial

Metastatic Castration-Resistant Prostate Cancer

Phase 2 open-label trial of onvansertib + abiraterone

Trial Sites: Beth Israel Deaconess, Dana Farber, Mass General Principal Investigator: Dr. David Einstein

New Therapeutic Options are Needed to Overcome Resistance to SOC Androgen Receptor Signaling Inhibitors (ARSi)

Resistance develops to treatment with standard of care ARSi's within 9-15 months¹

ARSi's offer a median overall survival (mOS) benefit of **only ~4 months**¹

No effective treatment options are

available for the up to 40% of mCRPC patients with an AR-V7 mutation²

Limited options for patients once resistant to abiraterone

New treatment options are needed to extend the duration of response to ARSi's and increase overall survival

¹Antonarakis, Emmannel – Current Understanding of Resistance to Abiraterone and Enzalutamide in Advanced Prostate Cancer; Clinical Advances in Hematology & Oncology – May 2016 – Volume 14, Issue 5; ²Armstrong et al., 2019, JCO 37: 1120-1129; SOC: Standard-of-care; mCRPC: Metastatic castration resistant prostate cancer Onvansertib works synergistically in combination with abiraterone (Zytiga®) and significantly increases mitotic arrest

Disease Control Assessed by PSA Stabilization

Trial Design:

	Dosing Schedule	Duration	Efficacy Endpoint
Cohort A (n = 24) Cohort Closed	Onvansertib 24mg/m ² Days 1-5 (21-day cycle) + Zytiga [®] (Abiraterone)	4 Cycles = 12 Weeks	Disease Control (PSA Stabilization or Decline)
Cohort B (n = 32)	Onvansertib 18mg/m ² Days 1-5 (14-day cycle) + Zytiga [®] (Abiraterone)	6 Cycles = 12 Weeks	Disease Control (PSA Stabilization or Decline)
Cohort C (n = 32)	Onvansertib 12mg/m ² Days 1-14 (21-day cycle) + Zytiga [®] (Abiraterone)	4 Cycles = 12 Weeks	Disease Control (PSA Stabilization or Decline)

Eligibility Criteria

Initial resistance to Zytiga; 2 consecutive rises in PSA levels

Efficacy Endpoint:

Internationally Recognized Prostate Cancer Working Group

 Primary: disease control evaluated as PSA decline or stabilization (PSA rise <25% over baseline)

What is Clinical Trial Success

- ~30% patients achieve primary efficacy endpoint of disease control at 12 weeks (PSA stabilization or decrease); confirmed by radiographic scan
- Achieve median radiographic PFS of ≥6 months

Note: radiographic assessment by RECIST v1.1 [CR = disappearance of all target lesions, PR = ≥30% decrease, PD = ≥20% increase, SD = does not meet criteria for PR nor PD]; mCRPC: Metastatic castration resistant prostate cancer; PSA: Prostate specific antigen; PFS: Progression-free survival

Patient Baseline Characteristics

Total patients N=39	Median [range] or n (%)
Age in Years	72 [54-87]
Nonwhite Ethnicity	5 (13%)
ECOG 0 1	34 (87%) 5 (13%)
Years Since Diagnosis	5 [1-18]
Grade Groups 4 and 5	24 (62%)
De Novo Metastatic Disease	13 (33%)
Presence of Bone Metastasis	33 (85%)
Presence of Visceral Metastasis	13 (33%)
Baseline PSA, ng/mL	12.5 [0.6-224]
AR-V7 ⁺ at Baseline*	9 (23%)
Baseline CTC Count per mL of blood**	2.2 [0-87]

ECOG: Eastern Cooperative Oncology Group, AR-V7: androgen receptor variant 7, CTC: circulating tumor cells

*AR-V7 status was evaluated using the EPIC and Johns Hopkins University testing platforms **CTC count was performed by EPIC

Enrollment as of October 16th, 2020

Number of patients (N)	Arm A	Arm B	Arm C
Treated	24	11	4
Currently on Treatment	1	1	4
Completing 12-weeks	14	8	3
Discontinued before 12 weeks	10	2	0
Progressive Disease (PD) Adverse Event Withdrew Consent	3 5 2	1 1 0	0 0 0
Patients evaluable for efficacy (completed 12 weeks + PD)	17	9	3

Phase 2 Data Demonstrate the Safety and Efficacy of Onvansertib in mCRPC

Safety Assessment

Adverse events Total Patients N=39	Grade 1	Grade 2	Grade 3	Grade 4	All grades
Anemia	10	5	1		16
Thrombocytopenia	11	1		1	13
Fatigue	10	2			12
Neutropenia	1	1	7	3	12
Hypophosphatemia	3	3	4		10
WBC decrease	2	2	3	2	9
Back pain	2	3			5
Hypokalemia	3	1	1		5
Constipation	4	0			4
Nausea	3	1			4

- Most frequent Grade 3 and 4 adverse events (AEs) were expected, on-target, hematological associated with onvansertib mechanism of action
- Hematological AEs were reversible and effectively managed by dose delay, dose reduction and/or growth factor support

Efficacy Evaluation at 12-Weeks

Total Patients Evaluable N=29	Arm A	Arm B	Arm C
Evaluable for efficacy*	17	9	3
Completed 12-week treatment	14	8	3
Progressed within 12 weeks	3	1	0
Disease control**	5 (29%)	3 (33%)	2 (67%)
Radiographic stable disease	9 (53%)	5 (55%)	3 (100%)
Durable response (>7 months)	4 (23%)	4 (44%)	NA

* Completed 12 weeks of treatment or progressed within 12 weeks
** Defined as PSA stabilization or decline (PSA rise <25% over baseline)

Phase 2 Data Demonstrate the Efficacy of Onvansertib and and Durability of Response Including Patients with AR Alterations

02-007

0

0

00

Efficacy in patients with AR alterations:

- 8 of the patients evaluable for efficacy had at least 1 AR alterations: AR-V7+ (n=6), AR T878A mutation (n=2) and/or AR amplification (n=3)
- 3 (37%) patients achieved disease control

ardiff Oncology[™]

- 4 (50%) patients had radiographic stable disease
- 3 patients had durable responses (range 7-9 months)

*AR-V7 status was evaluated using the EPIC and Johns Hopkins University testing platforms Genomic profiling of circulating tumor DNA was performed using Gardant360[®] test

Treatment Response and Duration for Patients Completing 12 Weeks of Treatment 1.5 year (14+7)PSA endpoint 03-043 01-044 C 02-045 E Partial response Radiographic 01-025 Stable disease assessment 01-026 • (2+9)Progressive disease 03-030 01-024 02-041 ഥ 01-033 • Physcian decision Reason for 03-039 Patient decision discontinuation 02-042 other than PD Adverse event* 01-014 03-017 03-037 01-021 \rightarrow Ongoing ଡ 02-036 Transitioned to Arm B 03-013 02-003 03-004 AR-V7+

400

 $\tilde{\mathcal{O}}$

Davs of treatment

200

600

2020 Corporation Presentation | 32

AR T878A

AR Amplification

AR alterations

 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

Onvansertib-Induced Circulating Tumor Cell Decrease is Associated with Progression-Free Survival

Circulating tumor cell (CTC) count, reported as favorable or unfavorable (<5 versus \geq 5 CTC/7.5mL of blood, respectively) is a prognostic factor for survival in CRPC – conversion from unfavorable to favorable is associated with improved survival

At baseline, 27 (73%) of 37 patients had unfavorable CTC count; 10 were analyzed following 12 weeks of treatment:

- 5 (50%) patients had an ≥80% CTC decrease, including 2 AR-V7+ patients (01-024 and 01-025)
- 4 (40%) patients converted from unfavorable to favorable CTC level, including 3 patients with no detectable CTC
- Median time on treatment was 9.2 months for patients with CTC decrease (n=5) vs 4.9 months for patients with CTC increase (n=5)

Percent Change in CTC: 12-Weeks vs Baseline in Patients with Unfavorable CTC Level at Baseline

Identifying an Onvansertib-Abiraterone Response Gene Signature

Positive Phase 2 results may provide an opportunity for a Phase 2b registrational trial

New Clinical Programs Planned

Chronic Myelomonocytic Leukemia (CMML) Pancreatic Ductal Adenocarcinoma (PDAC)

Phase 2 Study to Evaluate the Safety and Efficacy of Onvansertib in RAS-pathway Mutant CMML

Study Rationale

- Proliferative CMML is enriched for activating RAS pathway mutations such as NRAS, KRAS, CBL, PTPN11 and NF1, all of which have been associated with adverse outcomes
- RAS pathway mutations drive proliferative CMML via a novel RAS-KMT2A-PLK1 axis, which can be therapeutically targeted with PLK1 inhibitors
- In-vitro and in-vivo experiments with onvansertib as a single agent have shown a dose-dependent inhibition of CMML cell growth, with improved cell differentiation

Activating RAS Pathway Can Be Therapeutically Targeted with PLK1 Inhibitors

Phase 2 Two-Arm Randomized Trial of Onvansertib +/- Decitabine in RAS-Pathway Mutated CMML

Determine the safety and overall response rate (ORR) of onvansertib, a novel oral PLK1 inhibitor in RASpathway mutant chronic myelomonocytic leukemia

Trial Design:

	Dosing Schedule	Duration	Efficacy Endpoint
Two Arms: Arm A (n=38) Treatment Naïve Arm B (n=38) Relapsed/Refractory	Onvansertib 12mg/m ² Days 1-14 (21-day cycle)	3 cycles monotherapy (option to add decitabine at cycle 4 if lack of efficacy with single agent)	Interim analysis of first 18 patients after 3 cycles to evaluate objective response

Eligibility Criteria:

- Newly diagnosed or relapsed/refractory to prior therapy
- RAS pathway mutant: NRAS, KRAS, PTPN11, CBL and NFI with frequency allele of ≥5%

Efficacy Endpoint:

• Overall response rate following single agent treatment with onvansertib

What is Clinical Trial Success

 To be established and confirmed in collaboration with investigators and statistician

Phase 2 Study of Onvansertib in Combination with 5-FU and Nal-IRI for Second Line Treatment of KRAS-Mutated Metastatic Pancreatic Ductal Adenocarcinoma (PDAC)

Study Rationale

- KRAS is the most common oncogene mutated in pancreatic adenocarcinoma, which is present in ~95% of tumors
- Mutant KRAS is essential for PDAC growth, where the constitutive activated RAS proteins contribute to tumorigenesis, treatment resistance and metastases
- No effective RAS inhibitors have been approved for the treatment of KRAS-mutated pancreatic cancer
- Significant need for new effective second line treatment option

Mutant KRAS is Essential for PDAC Growth – Activated RAS Proteins Contribute to Tumorigenesis

Phase 2 Open Label Trial of Onvansertib + 5-FU and Nanoliposomal Irinotecan in KRAS-Mutated PDAC

Trial Design (~40 patients):

Eligibility Criteria

Prior abraxane/gemcitabine and no prior irinotecan or Nal-IRI

Efficacy Endpoints

- Best overall response (complete response [CR] or partial response [PR]) and disease control rate (CR, PR or stable disease [SD])
- Progression-free survival (PFS) rate at 6 months
- Overall survival (OS)
- Reduction in KRAS allelic burden in liquid biopsies

What is Clinical Trial Success

- Achieve ≥26% overall response rate (ORR) 9 out of 35 patients
- Achieve ≥36% progression free survival rate at 6 months – 13 out of 36 patients

Strong Patent Portfolio

Core Technology: 3 Issued Patents to 2030 in US, Europe and Asia, with anticipated extension to 2035

Compound (onvansertib): US 8614220

Salt forms of onvansertib: US 8648078

Combinations with anti-neoplastic compounds: US 8927530

Evergreening: Combination Therapy

Exclusive license from MIT for 2 US issued patents with broad method claims for combination of PLK inhibitor + antiandrogen compounds to treat any cancer

US 9566280; US 10155006; Expiration 2035

Evergreening: Biomarkers

Method for assessing PLK1 target phosphorylation status for identifying patients to be treated with PLK1 inhibitors

PCT US1948044, Expiration 2039

Method for treating patient with a PLK inhibitor when there is a PSA rise

Provisional, Expiration 2040

Cardiff Oncology At-A-Glance

Clinical-stage biotech company, developing **onvansertib**, an oral, highly-selective Polo-like Kinase 1 (PLK1) inhibitor, to treat cancers with the greatest medical need for new effective therapies

Exchange	Nasdaq: CRDF
Cash & Cash Equivalents (as of 10/31/20)	\$131.8M
Q1 – Q3, 2020 Average Quarterly Cash Burn	\$3.8M
Headquarters	San Diego, CA

Investment Highlights

3rd Generation, 1st-in-class, Oral PLK1 Inhibitor

Onvansertib overcomes the shortcomings of prior PLK inhibitors:

- Highly selective for PLK1
- · Orally administered
- 24-hour half-life
- Flexible dose and schedule

Specifically targets a known mechanism of cell division that is required for tumor cell viability

Preliminary clinical data demonstrate the safety, tolerability and efficacy of onvansertib in combination with SOC across multiple indications

Strong Lead Program in KRAS-mutated mCRC

Supported by compelling preliminary clinical data from a Phase 1b/2 trial showing a ten-fold improvement in ORR compared to SOC

Preclinical data support:

- MOA of synthetic lethality between KRAS mutant mCRC and PLK1 inhibition
- Synergy with irinotecan and 5-FU

First Indication: 2nd line treatment in patients who have failed 1st line treatment with FOLFOX with/without bevacizumab

Integrated Biomarker Strategy

Circulating Tumor DNA: changes in KRAS mutational burden in blood are predictive of subsequent tumor shrinkage in mCRC

Circulating Tumor Cells: changes are predictive of overcoming antiandrogen resistance in mCRPC

Circulating Tumor DNA: changes are predictive of decreases in leukemic bone marrow cells

Diversified Pipeline Across Numerous Cancers

Clinical data from ongoing trials support the use of onvansertib in combination regimens across numerous aggressive cancers:

- mCRC Phase 1b/2 trial
- mCRPC Phase 2 trial

Potential expansion opportunities:

- Chronic myelomonocytic leukemia
- Pancreatic cancer
- Triple negative breast cancer
- Lung cancer
- Ovarian cancer

PLK: Polo-like Kinase; SOC: Standard-of-care; ORR: Overall response rate; MOA: Mechanism of action; mCRC: metastatic colorectal cancer; mCRPC: metastatic castration resistant prostate cancer; AML: Acute myeloid leukemia

Cardiff Oncology™

Thank You

for more information contact: ir@cardiffoncology.com